Derivative Discretization on GPUs

Paulius Micikevicius
NVIDIA

Manycore and Accelerator-based High-performance Scientific Computing
UC Berkeley, 2011

What this talk is about

* Derivative discretization for FD methods
— Time domain
— Explicit (derivatives approximated with stencils)

— Examples assume second derivatives
* Though other orders would be implemented exactly the same way

* Goal: provide sufficient background so that a scientist
can choose the right approach for the problem at hand

— Review implementation approaches and their tradeoffs
— Some performance analysis

— Experimental results showing throughputs
* Reasonably optimized (as opposed to highly optimized)

Outline

Assumptions and definitions

Relevant GPU details

PDEs with derivatives in one dimension
PDEs with derivatives in two dimensions

Assumptions and definitions

Experimental setup:

* Fermi C2050, ECC off, 64-bit Linux, CUDA 3.2
3D data used in all experiments

— 512x512x512 (excluding the padding)

— Results can be extrapolated for 1D and 2D data with the same number

of elements

Dimensions: x, y, z

— X is the fastest varying, z is the slowest
Derivative discretization:

— Symmetric stencil with radius=R

— Assumes isotropic medium and non-stretched grid

— Number of stencil points:
* 1D: 2R+1
* 2D: 4R+1
* 3D: 6R+1

Relevant GPU details

Memory accesses are per warp
— Warp = 32 threads
— 32 addresses are converted into line requests

— For max perf: an access by a warp should be within a line
(or small number of lines)

GPUs need sufficient number of threads to saturate
memory and instruction bandwidth

— ILP helps to an extent (Vasily Volkov’s talk at GTC2010)

If there are barriers, it’s often better to have a few
smaller threadblocks concurrent per SM

— As opposed to one large one

PDEs with derivatives in 1 dimension

* Two types of kernels
— Determined by stencil memory access pattern

* Stencils along the fastest-varying dimension
— A thread needs a contiguous region of elements
— Adjacent threads’ regions overlap
— Staged through shared memory

* Stencils along other dimensions
— Adjacent threads access adjacent elements
— No region overlap
— Straightforward “marching” along the dimension

Two approaches for x-stencils

* One thread per output element
— Some threads also fetch halos

W_J\ ~ J\(_/

“halo” Input elements corresponding to output “halo”

* One thread per input element
— Threads for halos as well (but don’t compute or write)

W_J\ ~ JW_J

“halo” Input elements corresponding to output “halo”

X-stencil performance

8 ——— 256-thread blocks
7 — \ halo threads, 256-thread blocks
6 ‘\ ====64-thread blocks
5 . [S=el _\ -==-halo threads, 64-thread blocks
W "'"-.._
w0 L. T~
% 4 — === S " >}"‘"\
5 -------------------- -::'."__*-
3 e ‘-a:—-._ —
2
1
0
0 1 2 3 4 5 6 7 8 9 10 11
Stencil Radius

256- vs 64-thread bloc

ks:

— Halos are a larger percentage of accesses for 64-thread blocks

e R=1:

64-thread block:
256-thread block: reads 264 values to produce 256

Accesses are in 32B lines, so in increments of 4 fp64 values

reads 72 values to produce 64

— Easier to saturate arithmetic pipelines with more threads
— Perf converges for larger orders:

Code becomes arithmetic rather than bandwidth bound

Stencils along “slow” dimensions

I”

 Each thread is responsible for a “pencil” of output
— “Marches” along the dimension
— Keeps the necessary number of elements in registers
* Per output element:

— Read one input element, do all the arithmetic
* Arithmetic intensity increases with stencil size
 Memory pressure doesn’t

— Manage values in registers (“advance” the queue)

Aead “marching” direction

. Values needed by a thread, stored in registers

Fastest memory dimension

template <int radius, int diameter>
__global__ void dy(TYPE* g_dy, const TYPE* g_input,
const int nx, const int ny, const int nz,
const int dimx, const int dimy, const int dimz)

int ix = blockldx.x * blockDim.x + threadldx.x;
int iz = blockldx.y * blockDim.y + threadldx.y;
int stride = dimx Compute indices for access
int idx_out = iz*dimx*dimy + ix;

intidx_in =idx_out - radius*stride;

TYPE buffer[diameter];

#pragma unroll

for(int i=1; i<diameter; i++)

{
buffer[i] = g_input[idx_in];
idx_in += stride;

}

/I #pragma unroll X
for(int iy=0; iy<ny; iy++)
{
#pragma unroll
for(int i=0; i<diameter-1; i++)
buffer[i] = buffer[i+1];
buffer[diameter-1] = g_input[idx_in];

TYPE derivative = ¢_coeff[0] * buffer[radius];
#pragma unroll
for(int i=1; i<=radius; i++)
derivative += c_coeff[i] * (buffer[radius-i] + buffer[radius+i]);

g_dy[idx_out] = derivative

idx_in += stride;
idx_out += stride;

template <int radius, int diameter>
__global__ void dy(TYPE* g_dy, const TYPE* g_input,
const int nx, const int ny, const int nz,
const int dimx, const int dimy, const int dimz)

int ix = blockldx.x * blockDim.x + threadldx.x;
int iz = blockldx.y * blockDim.y + threadldx.y;

Compute indices for access

int stride = dimx;
int idx_out = iz*dimx*dimy + ix;
intidx_in =idx_out - radius*stride;

TYPE buffer[diameter]; N

#pragma unroll

EOf("“ =1} i<diameter; i++) > Declare the local (register) buffer for values
bufferfi] = g_inputfidx_in]; Fill it up to start the computation

idx_in += stride;

} J

/I #pragma unroll X
for(int iy=0; iy<ny; iy++)
{

#pragma unroll

for(int i=0; i<diameter-1; i++)
buffer[i] = buffer[i+1];

buffer[diameter-1] = g_input[idx_in];

TYPE derivative = ¢_coeff[0] * buffer[radius];
#pragma unroll
for(int i=1; i<=radius; i++)
derivative += c_coeff[i] * (buffer[radius-i] + buffer[radius+i]);

g_dy[idx_out] = derivative

idx_in += stride;
idx_out += stride;

template <int radius, int diameter>
__global__ void dy(TYPE* g_dy, const TYPE* g_input,
const int nx, const int ny, const int nz,
const int dimx, const int dimy, const int dimz)

int ix = blockldx.x * blockDim.x + threadldx.x;
int iz = blockldx.y * blockDim.y + threadldx.y;

Compute indices for access

int stride = dimx;
int idx_out = iz*dimx*dimy + ix;
intidx_in =idx_out - radius*stride;

TYPE buffer[diameter]; N

#pragma unroll

EOf("“ =1} i<diameter; i++) > Declare the local (register) buffer for values
bufferfi] = g_inputfidx_in]; Fill it up to start the computation

idx_in += stride;

} J

#pragma unroll 5 N
for(int iy=0; iy<ny; iy++)
{

#pragma unroll

for(int i=0; i<diameter-1; i++)
buffer[i] = buffer[i+1];

buffer[diameter-1] = g_input[idx_in];

TYPE derivative = ¢_coeff[0] * buffer[radius]; > M ain | OOp

#pragma unroll
for(int i=1; i<=radius; i++)
derivative += c_coeff[i] * (buffer[radius-i] + puffer[radius+i]);

g_dy[idx_out] = derivative

idx_in += stride;
idx_out += stride;

#pragma unroll 5
for(int iy=0; iy<ny; iy++)

{
#pragma unroll)
for(int i=0; i<diameter-1; i++)
buffer[i] = buffer[i+1] “Advance’” the local values
buffer[diameter-1] = g_input[idx_in];)
TYPE derivative = c_coeff[0] * buffer[radius];)

#pragma unroll
for(int i=1; i<=radius; i++)
derivative += c_coeff[i] * (buffer[radius-i] + buffer[radius+i]);

> Compute the
derivative

J

g_dy[idx_out] = derivative,

idx_in += stride;
idX_out += stride;

#pragma unroll 5
for(int iy=0; iy<ny; iy++)
{
#pragma unroll N
for(int i=0; i<diameter-1; i++)
buffer[i] = buffer[i+1]; “Advance” the local values
buffer[diameter-1] = g_input[idx_in];

TYPE derivative = c_coeff[0] * buffer[radius]; A

#pragma unroll

for(int i=1; i<=radius; i++) > gé)rrir\]/gijit/eethe
derivative += c_coeff[i] * (buffer[radius-i] + buffer[radius+i]);

g_dy[idx_out] = derivative,

idx_in += stride;
idX_out += stride;

Y-stencil throughput

8
! — *""'---...\
" 5
T_n-. \
2 4
(&
(U] 3 | unrolled, 256-threads
= 256-threads
2 I
====unrolled, 64-threads
1 771 —==-64-threads
0 | | | |
0 1 2 3 4 5 6 7 8 9 10 11
Stencil Radius

e /-stencil is pretty much the same

Bandwidth-bound

GCells/s

Stencil Radius

-“\\
\
L unrolled, 256-threads
— 256-threads
====unrolled, 64-threads
| ===-=64-threads
| | | |
| | | |
1 2 3 4 5 6 9 10

11

Bandwidth-bound

GCells/s

2=

Stencil Radius

“""""""b.__. D
\._ \%&
L unrolled, 256-threads
| ——256-threads Instruction-bol
====unrolled, 64-threads
| ===-=64-threads
| | | |
1 2 3 4 5 6 7 8 9 10

11

nd

Y-stencil performance vs instructions issued

3 30

S P L ,/ -

~~d 24
. ‘”“\‘)(/ n"\ 21

5 1 e I - 18
/

15

Mcells/s
=
\\
\
\ ‘
)
!
;\
]
]
]
Instructions

. / / 12
)
5 / ___....-—-"'""'_-_._—_- instructions (unrolled)
—— instructions
1 ====Mcells/s (unrolled)
====MCells/s+'single

0 I | ! -0
0 1 2 3 4 5 6 7 8 9 10 11

Stencil Radius

Summary: PDEs with 1-dimensional derivatives

* Derivatives along the fastest-dimension tend
to be instruction-throughput limited

— Small threadblocks perform slower for low orders

* Derivatives along the “slow” dimensions stay
memory bandwidth limited until larger
orders
— Perform essentially as memcopies

PDEs with derivatives in 2 dimensions

 Two “subtypes”
— Combination of derivatives along one dimension

o° 0 ot 0 o° 0
+ + +
[82x 82y] [82x 822] [82y 822J

— Mixed derivatives
o° oa o°
OXoy OXOZ oyoz

* Implementation choices:

— Two-pass approach

« 2 kernel launches, 2" consumes the output of the 15t one

* More accesses per output cell, but halos are a small percentage of accesses
— Single-pass approach

* Fewer accesses per output cell, but halos can start dominating

Two pass approach

* Mixed derivatives:
— Straightforward: run 2 kernels in sequence
— 4 accesses per output cell

* Combination of “single” derivatives:

— 2" kernel needs a to read both the original data
and the output of the 15t kernel

— 5 accesses per output cell

Single-pass approach

* Derivatives including the fastest-varying dimension

— Compute the derivative in the “slow” dimension out of
registers, store into SMEM

— Compute the derivative in the “fast” dimension out of
SMEM

Aead “marching” direction

(J Stored in SMEM
(@ Stored in register
ﬁ Halo, stored in registers (only needed for mixed derivatives

Pxy throughput, fp64

Stencil radius

| |
1-pass —
2-pass [—
[\
> \\
8 H""---...;
O ———-..______*—-.\
3 4 5 6 7 9 10 11
Stencil radius
Pxz throughput, fp64
| |
——1-pass
——2-pass
] ~
2 S
8 ""'-.______.\-.._
© o
3 4 5 6 7 9 10 11

82

Single-pass approach e

 Mixed Derivatives not including the fastest-varying dimension
— Successive threads still need to access along the fastest-varying
dimension
* To get GMEM coalescing

— Use 2D threadblocks
* Tile the xy-plane with threadblocks
e Each threadblock “marches” along z dimension
* Load data and halos above/below at the front into SMEM, compute y-deriv
* Propagate y-derivs through registers, compute z deriv

Thread “marching” direction

GCells/s

Pyz throughput, fp64

——1-pass (32x8)
——1-pass (32x16)

\\ 2-pass i
\\ N
-.-___-'-l--______ E—
3 4 5 6 7 8 9 10

Stencil radius

11

Combinations of “single” derivatives

Stencil Radius

dx + dy dx + dz
8 I I 8 | |
7 — —1-pass 7 ‘\ ——1-pass
6 N S 6 N
AN -pass \ —2-pass
w 5 ~ w5 ~——
T 4 N g * N
Q Q
© 3 © 3 —
— — ———
—
2 e — 2 —
1 1
0 0
0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11
Stencil Radius Stencil Radius
dy + dz
8 I —
7 ——1-pass (32x16) |—
6 \\\ ———1-pass (32x8)
\ \ —2-pass
5 —
5 \
%)
3 4 \ n
3, N
—
2
—
1
0
0 1 2 3 4 5 6 7 8 9 10 11

Comments and conclusions

Understanding basic computer-architecture concepts allows for very
effective optimizations

— Know whether code is memory or instruction bound, optimize accordingly
* loop-unrolling pragma for {y, z}-stencils
* Choosing 1- or 2-pass approach for yz-stencils

— Keep mem system in mind when parallelizing

Output throughput does not decrease by much when increasing
spatial order from 2" to 4t" or 6"

— May allow working with smaller grids / longer time-steps

Fp64 stencil code is bandwidth-bound for smaller orders, instruction-
bound for larger ones

— Cross-over: 8t to 14t order in space
— Fp32 stencils are bandwidth bound for even greater orders

14

12

[y
o

GCells/s

fp32 Mcells/s, 256-thread blocks

—v-derivative, unrolled
—\-derivative, regular
——2z-derivative, unrolled
—z-derivative, regular
—x-derivative, regular

—x-derivative, hlt

] N
R

/

5

6 7

Stencil radius

9 10

11

